CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 18 — Intro to Transformers: Residual Connections; Attention & BRNNs; Positional
Encodings; Transformer Architecture
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Lecture Plan

Introduction to the Transformer Architecture

o One more advanced feature of NNs: Residual Connections
o Attention and BRNNs (brief review)
o Back to fixed-length sequences: Positional Encodings

o Building the Transformer Architecture layer by layer



One more feature.... Residual Connections

Residual Connections are connections which skip a layer!
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The main purpose of such a “short-circuit” connection is to provide
additional pathways for backpropagation.

These were first tried to avoid vanishing gradients in very deep networks
used for image classification....



One more feature.... Residual Connections

The deeper the network, the worse the performance, so the notion of a
Residual Network was developed, and led to improved performance:
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One more feature.... Residual Connections

Why is it (sometimes) a good idea?

It provides alternate pathways for the forward pass, and shorter pathways
for the backpropagation:
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One more feature.... Residual Connections

Residual connections are made in Pytorch are by just adding a few assignment
statements!

o Residual connections can be made before the non-linear activation function, or
after.

o Aggregation of residual vectors is typically done by addition, but concatenation is
also possible (changing the width of the next layer).

class ResidualBlock(nn.Module):
def init (self, input dim, hidden dim):

super().__init_ ()

self.fcl = nn.Linear(input dim, hidden dim)
self.fc2 = nn.Linear(hidden dim, input dim)
self.relu = nn.ReLU()

def forward(self, x):

residuall = x # Original input for residual connection

out = self.fcl(x) # First fully connected layer

out = self.relu(out)

residual?2 = out # Output of first layer for residual connection: AFTER Relu
out = self.fc2(out) # Second fully connected layer

out += residuall + residual2 # Adding the residuals: BEFORE Relu
out = self.relu(out)
return out




The Attention Mechanism

Recall: Attention refers the ability to focus on particular words in the backward
and forward context; the pattern of what words matter in which context can be
learned by the network. The pattern can be represented by a probability
distribution over the sequence of input tokens:

/1

[ 0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0 ]

Attention Weights



The Attention Mechanism plus BRNNs
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The Attention Mechanism

Displaying the activation matrix shows how attention was applied to the
translation:
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Attention vs. BRNNNs

BUT, it seemed that the "vanishing
gradients” problem prevented
Attention from performing as well
as expected!

SO... researchers went back to the
use of fixed-length sequences, NOT
using RNNs....

A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the

bidirectional state at that time point.



Attention vs. BRNNNs

BUT, it seemed that the "vanishing gradients™ problem prevented Attention
from performing as well as expected!
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SO... researchers went back to the use of fixed-length sequences, NOT
using RNNSs....



The Return of Fixed-Length Sequences

The focus on the Attention mechanism make researchers give up on the notion of
Recurrent Networks with arbitrary-length sequences, and go back to fixed-length

sequences:
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[ 0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0 ]

In the original transformers paper, the maximum size was 512 tokens. GPT-3 used
sequences of length 2048. There is no theoretical upper-bound, just a matter of the
complexity of the model and the time to train it.

But recall that a neural network does not care what order its input is in, and
Attention does not inherently represent ordering, but we need to represent order, so:

How do we encode the order of the words in a sentence for a neural network?



Positional Encodings

The first thing you might try as a positional encoding is simply indices, aggregated with
the embeddings:

Integer index Word Embedding

“Keep these words in order !”

Neural Network

0| ...... 1| ... 2| ...... 3 4 ... 51 ......

(0, 'Keep’) (1, 'these’) (2, 'words') (3, 'in") (4, 'order’) (5, '"!'")

But this really doesn’t work well!

A simple linear sequence:
o Doesn’t generalize well to arbitrary lengths of sentences,
o Doesn’t capture the relative position of words in sentences of different lengths.

o Neural networks work better with continuous (floating point) rather than discrete
(integer) representations.



Positional Encodings
There are a number of different positional encodings used in current transformers.
Essentially, they all encode the position using an “positional embedding vector.”

The original design used a truly bizarre encoding using sines and cosines:

Positional Encoding

Index
Sequence  of token, Matrix with d=4, n=100
e i=0 =0 i=1 i=1
Poo=sin(0) Po1=cos(0) Po2=sin(0) Pos=cos(0)
I — 0 = =0 =1 =0 =4
| o Pio=sin(1/1) = P11=cos(1/1) P42=sin(1/10) P13=cos(1/10)
am — 1 = 0.84 = 0.54 = 0.10 = 1.0

P2o=sin(2/1) | Pz21=cos(2/1) P22=sin(2/10) P23=cos(2/10)
= 0.91 = -0.42 = 0.20 = 0.98

P3o=sin(3/1) = Pai=cos(3/1) Ps2=sin(3/10) Pss=cos(3/10)
Robot —» 3 = 0.14 = -0.99 = 0.30 = 0.96

Positional Encoding Matrix for the sequence ‘I am a robot’

Dimension of the embedding

Position in sequence:

1 0 1 ]

(L o. . . . i
[ 0.84147098 0.54030231 ©.09983342 0.99500417] 1
[ ©.90929743 -0.41614684 ©.19866933 0.98006658] 2
[ 0.14112001 -0.9899925 ©@.29552021 0.95533649]] 3



Positional Encodings

The sine/cosine embedding depends only on the position, not the word, here is a
graphical display of the sequence numbers 0 .. 99, with dimension 512:
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The positional encoding matrix for n=10,000, d=512, sequence length=100

The positional embeddings and the word embeddings are aggregated by adding them
together before entering the network:

Neural Network

Positional
Encoding

o4

Input
Embedding

I

Inputs

Advantages of this bizarre scheme are:
o Continuous representation as floats;

o Positional embeddings are in useful range
[0..1];

o Each position has a unique encoding
which represents the relative position of
words.



Positional Encodings

The second major positional encoding, used by BERT and GPT, are Learned
Positional Embeddings.

There is, again, an embedding matrix, which is initialized randomly:

Dimension D of the embedding

Position in sequence:
0
\ '
2
3

These are vector embeddings which are learned during training, just as with word
embeddings. The key points here are:

o The position is simply a "code” which identifies each position by a distinct location
in the vector space with D dimensions;

o During training, the network can learn a positional embedding which represents
useful information about token positions;

o Because these are learned, they can represent more complex relationships than
sinusoidal embeddings, which are static.

o Just like sinusoidal embeddings, they are aggregated with word embeddings by
addition.



Finally, The Transformer Architecture

The Transformer architecture puts together many of the ideas we’ve been discussing for the last

week into a multi-stage encoder and a multi-stage decoder.
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Attention Is All You Need
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Transformer: Encoder

We already know many of the pieces which make up the encoder:

Residual Connection
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Transformer: Encoder

The Feed-Forward Network has two layers, which expand and then contract the hidden
dimension:
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Transformer: Multi-Head Attention

The center of the design is the Attention mechanism, here Multi-Head Attention....

Residual Connection

Residual Connection

All the data paths shown
are the width of a word
embedding = 512, and
each path is duplicated
512 times, once for each
word in the input
sequence!
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Transformer: Multi-Head Attention

The basic mechanism at work here is self-attention, where the input is processed to determine
the dependencies between different words.
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Transformer: Multi-Head Attention

Multi-Head Attention applies this self-attention mechanism as 8 (or more)
self-attention Heads:
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This allows the encoder to try to understand 8 different kinds of dependencies among
the words in the input.
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Transformer: Encoder

Then, this encoder layer is stacked 6, 8, or more layers deep!
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