CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 18 — Intro to Transformers: Residual Connections; Attention & BRNNs; Positional
Encodings; Transformer Architecture

ol W

’ = ! " v -
W v A e R

£ oy S AL = S

f

A e ————. . ——

| s, RISE OF THE LARGE LANGUAGE MODELSY. >
| ; ""* 3 :..,‘\...__r::-' | ; \ AR &; \% b b \‘- ,_) !
Pt s 7 ‘- ‘ ,F(. . 2; ooy | [':V# |

Lecture Plan

Introduction to the Transformer Architecture

o One more advanced feature of NNs: Residual Connections
o Attention and BRNNs (brief review)
o Back to fixed-length sequences: Positional Encodings

o Building the Transformer Architecture layer by layer

One more feature.... Residual Connections

Residual Connections are connections which skip a layer!

l | Block
[Layeri] [Layeri]
v V
F ‘ F -
- wentity |
f Layeri+n ' | Layer |
Fx
f Y
Fix N
Y
Ax)

.....................
Tradtional Feedforward

without Residual Connection With Residual Connection

The main purpose of such a “short-circuit” connection is to provide
additional pathways for backpropagation.

These were first tried to avoid vanishing gradients in very deep networks
used for image classification....

One more feature.... Residual Connections

The deeper the network, the worse the performance, so the notion of a
Residual Network was developed, and led to improved performance:

VGG-19 34-layer plain 34-layer residual
- i T | "W |
: L i-i»om"u § \ o 56] e
o I. \: § =-1ayCr
- g 3 ‘g- 20-layer
3)«;- i hue;_f;k 2 EED 56-]3)'(:[2
o »(; n :«; n g g
CE e) = 20-layer
[)-3((;-.2“] [).3«'«5:] .
3 cora. 3 Corm. 63 e 1 :) 4 1 2) 4
e, il s iter. (1e4) iter. (1e4)
e Figure 1. Training error (left) and test error (right) on CIFAR-10
. St with 20-layer and 56-layer “plain” networks. The deeper network
" e S 58 has higher training error, and thus test error. Similar phenomena
oo, o . s Sl . e on ImageNet is presented in Fig. 4.
33 coow, 313 [mmi)
[73-!@;&4
:uﬂ;: n(;"(
Idceen sz |
ldt:« 512
7,,,,' ;!,7<.
a3 conw, 512
2
dcern s |
2
oy seel 12 [(amm sz |
[(sawwsz |
[Saemsz] ResNet-18 WAAAARAAAA,
3 care, 512 == ResNet-34| .'H-h‘\:r
T R v “o 10 0. e “ 50
fter. (104)
[[(®owsz | [®3emsz |
o M
1 4006 J g poct g podd
a0 fe 3908] fc 3900

e 2000

One more feature.... Residual Connections

Why is it (sometimes) a good idea?

It provides alternate pathways for the forward pass, and shorter pathways
for the backpropagation:

% %

=3] * il
F EENEENEANEE
P e G &b b
v Unravel v

(e]| => (] (&]
O e -

(v) (v)
e e

x>
w
I

H(x2) + x2
H(G(x1) + x1) + G(x1) + x1
H(G(F(xe) + xe) + F(xe) + xa) + G(F(xe) + xo) + F(xe) + xe

One more feature.... Residual Connections

Residual connections are made in Pytorch are by just adding a few assignment
statements!

o Residual connections can be made before the non-linear activation function, or
after.

o Aggregation of residual vectors is typically done by addition, but concatenation is
also possible (changing the width of the next layer).

class ResidualBlock(nn.Module):
def init (self, input dim, hidden dim):

super().__init_ ()

self.fcl = nn.Linear(input dim, hidden dim)
self.fc2 = nn.Linear(hidden dim, input dim)
self.relu = nn.ReLU()

def forward(self, x):

residuall = x # Original input for residual connection

out = self.fcl(x) # First fully connected layer

out = self.relu(out)

residual?2 = out # Output of first layer for residual connection: AFTER Relu
out = self.fc2(out) # Second fully connected layer

out += residuall + residual2 # Adding the residuals: BEFORE Relu
out = self.relu(out)
return out

The Attention Mechanism

Recall: Attention refers the ability to focus on particular words in the backward
and forward context; the pattern of what words matter in which context can be
learned by the network. The pattern can be represented by a probability
distribution over the sequence of input tokens:

/1

[0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0]

Attention Weights

The Attention Mechanism plus BRNNs

(B)RNN Encoder
(unrolled)

<1>' <2> <3>
y y h 4
S<i—1>
S S1 _Ll S
0 0 | 2 | RNN Decoder
L | | | (unrolled)
C<1> C<2> c<3>
Attention <> = h % a<>
Mechanism
()
/<.>))]) Attention Weights
a i —_ (a]<1> < az<l> : 33<I> . a§l>)
Softmax afb a§1> <l> a21>
e = (ef”, e, &5, f) a® | o 2> | g2
1 2 4
FFNN
<3> <3> <3> <3>
a; a; a
<i—1>
S h = (hy, hy, by, hy)

The Attention Mechanism

Displaying the activation matrix shows how attention was applied to the
translation:

w
- .
c c
E W)
) c 2 £ £
E 8 £ o 7] A © € E c = A
7] O -
o % g I e 2 ™ T = 8 = £ - 2 = o
UE LOUU‘C (= B~ © (=] u‘rawh> q“‘”c > C
coc 250 %eo 3 o w 2o el £8ceE w
F m ot wuwdg 3B EqCH v *wWocssEosS2soa0 .V
L* I
accord convient
F
de
sur
noter
la que

zone

economique environnement

européenne € marin
a est
- le
été
. moins
e connu
en de

aolt

1992 environnement

<end>

<end>

Attention vs. BRNNNs

BUT, it seemed that the "vanishing
gradients” problem prevented
Attention from performing as well
as expected!

SO... researchers went back to the
use of fixed-length sequences, NOT
using RNNs....

A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the

bidirectional state at that time point.

Attention vs. BRNNNs

BUT, it seemed that the "vanishing gradients™ problem prevented Attention
from performing as well as expected!

71

0.16,

SO... researchers went back to the use of fixed-length sequences, NOT
using RNNSs....

The Return of Fixed-Length Sequences

The focus on the Attention mechanism make researchers give up on the notion of
Recurrent Networks with arbitrary-length sequences, and go back to fixed-length

sequences:

/
OO OO O [

[0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0]

In the original transformers paper, the maximum size was 512 tokens. GPT-3 used
sequences of length 2048. There is no theoretical upper-bound, just a matter of the
complexity of the model and the time to train it.

But recall that a neural network does not care what order its input is in, and
Attention does not inherently represent ordering, but we need to represent order, so:

How do we encode the order of the words in a sentence for a neural network?

Positional Encodings

The first thing you might try as a positional encoding is simply indices, aggregated with
the embeddings:

Integer index Word Embedding

“Keep these words in order !”

Neural Network

0| 1| ... 2| 3 4 ... 51

(0, 'Keep’) (1, 'these’) (2, 'words') (3, 'in") (4, 'order’) (5, '"!'")

But this really doesn’t work well!

A simple linear sequence:
o Doesn’t generalize well to arbitrary lengths of sentences,
o Doesn’t capture the relative position of words in sentences of different lengths.

o Neural networks work better with continuous (floating point) rather than discrete
(integer) representations.

Positional Encodings
There are a number of different positional encodings used in current transformers.
Essentially, they all encode the position using an “positional embedding vector.”

The original design used a truly bizarre encoding using sines and cosines:

Positional Encoding

Index
Sequence of token, Matrix with d=4, n=100
e i=0 =0 i=1 i=1
Poo=sin(0) Po1=cos(0) Po2=sin(0) Pos=cos(0)
I — 0 = =0 =1 =0 =4
| o Pio=sin(1/1) = P11=cos(1/1) P42=sin(1/10) P13=cos(1/10)
am — 1 = 0.84 = 0.54 = 0.10 = 1.0

P2o=sin(2/1) | Pz21=cos(2/1) P22=sin(2/10) P23=cos(2/10)
= 0.91 = -0.42 = 0.20 = 0.98

P3o=sin(3/1) = Pai=cos(3/1) Ps2=sin(3/10) Pss=cos(3/10)
Robot —» 3 = 0.14 = -0.99 = 0.30 = 0.96

Positional Encoding Matrix for the sequence ‘I am a robot’

Dimension of the embedding

Position in sequence:

1 0 1]

(L o. . . . i
[0.84147098 0.54030231 ©.09983342 0.99500417] 1
[©.90929743 -0.41614684 ©.19866933 0.98006658] 2
[0.14112001 -0.9899925 ©@.29552021 0.95533649]] 3

Positional Encodings

The sine/cosine embedding depends only on the position, not the word, here is a
graphical display of the sequence numbers 0 .. 99, with dimension 512:

04 " TV
g

8 8 8 B

100

’ m”.'.',,“ ‘ ‘ll 'II ||| W Illll ||H]M|”

uu;

H i H;”
Jn NN 'f'tll‘."l I

7]

[

1
I

[

il

300

400 500 100

T 075
050
025
000
-0.25
-0.50

-0.75

The positional encoding matrix for n=10,000, d=512, sequence length=100

The positional embeddings and the word embeddings are aggregated by adding them
together before entering the network:

Neural Network

Positional
Encoding

o4

Input
Embedding

I

Inputs

Advantages of this bizarre scheme are:
o Continuous representation as floats;

o Positional embeddings are in useful range
[0..1];

o Each position has a unique encoding
which represents the relative position of
words.

Positional Encodings

The second major positional encoding, used by BERT and GPT, are Learned
Positional Embeddings.

There is, again, an embedding matrix, which is initialized randomly:

Dimension D of the embedding

Position in sequence:
0
\ '
2
3

These are vector embeddings which are learned during training, just as with word
embeddings. The key points here are:

o The position is simply a "code” which identifies each position by a distinct location
in the vector space with D dimensions;

o During training, the network can learn a positional embedding which represents
useful information about token positions;

o Because these are learned, they can represent more complex relationships than
sinusoidal embeddings, which are static.

o Just like sinusoidal embeddings, they are aggregated with word embeddings by
addition.

Finally, The Transformer Architecture

The Transformer architecture puts together many of the ideas we’ve been discussing for the last

week into a multi-stage encoder and a multi-stage decoder.

Decoder

Qutput
Probabilities

Encoder - \
Feed
Forward
4 1 ~\ | Add & Norm ;
ks o) Multi-Head
Feed Attention
Forward T 7 Nx
—_—
Nix Add & Norm
f-vl Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
) , N, Sy
e — J 1\ —,
Positional Positional
Encodi D ¢ i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Transformer: Encoder

We already know many of the pieces which make up the encoder:

Residual Connection

Residual Connection

)

.

1)
Add & Norm |}

Feed
Forward

Add & Norm |

Multi-Head
Attention

——

J

Positional
Encoding

Input
Embedding

Inputs

| 1]

||

Layer Normalization

Linear Layers

Layer Normalization

Positional Encoding

Embedding Layer

Transformer: Encoder

The Feed-Forward Network has two layers, which expand and then contract the hidden
dimension:

LL 512 wide
= 1
Add & Norm
Feed / \
Forward
] Relu
Nx | —{Add & Norm)
Multi-Head Linear Layer: 4 x 512 = 2048 neurons wide
Attention
AT p—)
e -
Positional D
Encoding y
Input
Embedding 512-Dimensional Vector

Transformer: Multi-Head Attention

The center of the design is the Attention mechanism, here Multi-Head Attention....

Residual Connection

Residual Connection

All the data paths shown
are the width of a word
embedding = 512, and
each path is duplicated
512 times, once for each
word in the input
sequence!

4 1 o
Add & Norm |}
Forward
3
N x

Add & Norm

Multi-Head
Attention

\. J
Positional
Encoding D
Input
Embedding
Inputs

The input sequence is
512 vectors, each 512
floats wide.

| 1]

||

Layer Normalization

Linear Layers

Layer Normalization

Positional Encoding

Embedding Layer with
512 dimensions

Transformer: Multi-Head Attention

The basic mechanism at work here is self-attention, where the input is processed to determine
the dependencies between different words.

The_ The_
o . _ =k g
Self-attention is implemented by a series of linear - -
transformations, scaled, and then softmaxed to produce e me. -
the probability distribution which tells us how much each — ™
word depends on other words in the same sequence. i oo-
d_ d_
Self-Attention
. L Scaled Dot-Product Attention
Linear

L)

Concat MatMul
Y b
c -

K
Scaled Dot-Product h softmax(.l)\ %4
Attention Vg

i tl 1
fam /-2 r-2
Linear Linear Linear

7 7

Q K Vv

Transformer: Multi-Head Attention

Multi-Head Attention applies this self-attention mechanism as 8 (or more)
self-attention Heads:

Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention
C cat C cat Concal Concal
I : ﬁ

Scaled Dm.p,oduc, Scaled Dot Product Scaled Dm Product Scaled Dot Produm Soaled Dot Product Scaled Dot-Product Scaled Dot-Product
Attentior Alter rmc Ater nhc Ater nhc

This allows the encoder to try to understand 8 different kinds of dependencies among
the words in the input.

The_ The_
animal animal_
didn_ didn_
= e The original design applied 8
Cross_ Cross_ .
"y e self-attention heads to
street_ street_ sequences of length 512.
because_| because
it_ it_
was was_
too_ too_ 512
l tire tire
& d. words
——

8 Heads

Transformer: Encoder

Then, this encoder layer is stacked 6, 8, or more layers deep!

fi: 1)
~>{ Add & Norm)
Feed
Forward
1
@» ~>{_Add & Norm
Multi-Head
Attention
L})
e J
Positional D
Encoding
Input
Embedding
Inputs

