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Lecture Plan

Introduction to the Transformer Architecture

o One more advanced feature of NNs: Residual Connections

o Attention and BRNNs (brief review)

o Back to fixed-length sequences: Positional Encodings

o Building the Transformer Architecture layer by layer



One more feature…. Residual Connections

Residual Connections are connections which skip a layer!

The main purpose of such a “short-circuit” connection is to provide 
additional pathways for backpropagation.

These were first tried to avoid vanishing gradients in very deep networks 
used for image classification….



One more feature…. Residual Connections

The deeper the network, the worse the performance, so the notion of a 
Residual Network was developed, and led to improved performance:



One more feature…. Residual Connections

Why is it (sometimes) a good idea?

It provides alternate pathways for the forward pass, and shorter pathways 
for the backpropagation:



One more feature…. Residual Connections

Residual connections are made in Pytorch are by just adding a few assignment 
statements!

o Residual connections can be made before the non-linear activation function, or 
after. 

o Aggregation of residual vectors is typically done by addition, but concatenation is 
also possible (changing the width of the next layer). 



Recall:  Attention refers the ability to focus on particular words in the backward 
and forward context; the pattern of what words matter in which context can be 
learned by the network.  The pattern can be represented by a probability 
distribution over the sequence of input tokens:

 [      0.005,       0.1,        0.02,      0.25,      0.16,       0.1,         0.26,      0.105,      0.0     ]

Attention Weights

The Attention Mechanism



The Attention Mechanism plus BRNNs



Displaying the activation matrix shows how attention was applied to the 
translation: 

The Attention Mechanism



Attention vs. BRNNs

BUT, it seemed that the ”vanishing 
gradients” problem prevented 
Attention from performing as well 
as expected!

SO… researchers went back to the 
use of fixed-length sequences, NOT 
using RNNs….



Attention vs. BRNNs

BUT, it seemed that the ”vanishing gradients” problem prevented Attention 
from performing as well as expected!

SO… researchers went back to the use of fixed-length sequences, NOT 
using RNNs….

0.005,       0.1,        0.02,      0.25,      0.16,       0.1,         0.26,      0.105,      0.0     ]



The Return of Fixed-Length Sequences

The focus on the Attention mechanism make researchers give up on the notion of 
Recurrent Networks with arbitrary-length sequences, and go back to fixed-length 
sequences:

In the original transformers paper, the maximum size was 512 tokens. GPT-3 used 
sequences of length 2048.  There is no theoretical upper-bound, just a matter of the 
complexity of the model and the time to train it. 

But recall that a neural network does not care what order its input is in, and
Attention does not inherently represent ordering, but we need to represent order, so:

    How do we encode the order of the words in a sentence for a neural network?



Positional Encodings
The first thing you might try as a positional encoding is simply indices, aggregated with 
the embeddings:

                     

                                         “Keep these words in order !”

     
(0, 'Keep’)   (1, 'these’)  (2, 'words’)  (3, 'in’)     (4, 'order’)  (5, '!’)

But this really doesn’t work well!
 
A simple linear sequence: 
o Doesn’t generalize well to arbitrary lengths of sentences, 
o Doesn’t capture the relative position of words in sentences of different lengths. 
o Neural networks work better with continuous (floating point) rather than discrete 

(integer) representations. 

Integer index           Word Embedding 

0     …… 1     …… 2     …… 3     …… 4     …… 5     ……

Neural Network



Positional Encodings
There are a number of different positional encodings used in current transformers.

Essentially, they all encode  the position using an “positional embedding vector.” 

The original design used a truly bizarre encoding using sines and cosines:

Position in sequence:
     0
     1
     2
     3

Dimension of the embedding



Positional Encodings

The sine/cosine embedding depends only on the position, not the word, here is a 
graphical display of the sequence numbers 0 .. 99, with dimension 512:

The positional embeddings and the word embeddings are aggregated by adding them 
together before entering the network:

Neural Network Advantages of this bizarre scheme are:
o Continuous representation as floats;
o Positional embeddings are in useful range 

[0..1];
o Each position has a unique encoding 

which represents the relative position of 
words. 



Positional Encodings

The second major positional encoding, used by BERT and GPT, are Learned 
Positional Embeddings. 

There is, again, an embedding matrix, which is initialized randomly:

These are vector embeddings which are learned during training, just as with word 
embeddings.  The key points here are:
o The position is simply a ”code” which identifies each position by a distinct location 

in the vector space with D dimensions;
o During training, the network can learn a positional embedding which represents 

useful information about token positions;
o Because these are learned, they can represent more complex relationships than 

sinusoidal embeddings, which are static.
o Just like sinusoidal embeddings, they are aggregated with word embeddings by 

addition.  

Dimension D of the embedding
Position in sequence:
     0
     1
     2
     3 
      ….



Finally, The Transformer Architecture

The Transformer architecture puts together many of the ideas we’ve been discussing for the last 
week into a multi-stage encoder and a multi-stage decoder. 

Encoder

Decoder



Transformer: Encoder

We already know many of the pieces which make up the encoder:

Layer Normalization

Linear Layers

Layer Normalization

Residual Connection

Residual Connection

Positional Encoding

Embedding Layer



Transformer: Encoder

The Feed-Forward Network has two layers, which expand and then contract the hidden 
dimension:

512-Dimensional Vector

Linear Layer: 4 x 512 = 2048 neurons wide 

Relu

LL 512 wide



Transformer: Multi-Head Attention

The center of the design is the Attention mechanism, here Multi-Head Attention….

Layer Normalization

Linear Layers

Layer Normalization

Residual Connection

Residual Connection

Positional Encoding

Embedding Layer with 
512 dimensions

All the data paths shown 
are the width of a word 
embedding = 512, and 
each path is duplicated 
512 times, once for each 
word in the input 
sequence! 

The input sequence is 
512 vectors, each 512 
floats wide. 



The basic mechanism at work here is self-attention, where the input is processed to determine 
the dependencies between different words. 

Self-attention is implemented by a series of linear
transformations, scaled, and then softmaxed to produce 
the probability distribution which tells us how much each 
word depends on other words in the same sequence. 

Transformer: Multi-Head Attention

Self-Attention



Multi-Head Attention applies this self-attention mechanism as 8 (or more) 
self-attention Heads:

This allows the encoder to try to understand 8 different kinds of dependencies among 
the words in the input. 

Transformer: Multi-Head Attention

The original design applied 8 
self-attention heads to 
sequences of length 512. 

512 
words

8 Heads



Transformer: Encoder

Then, this encoder layer is stacked 6, 8, or more layers deep!


